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Abstract� Safety and secrecy are formulated for a deterministic pro�
gramming language� A safety property is de�ned as a set of program
traces and secrecy is de�ned as a binary relation on traces� character�
izing a form of Noninterference� Safety properties may have sound and
complete execution monitors whereas secrecy has no such monitor�

� Introduction

It is often argued that information �ow is not safety� One argument is re�ne�
ment based and originates with Gray and McLean ���� They observed that for
nondeterministic systems	 a class of information �ow properties	 namely the
Possibilistic Noninterference properties	 are not safety properties� The reason is
because they are not preserved under replacement of nondeterminism in a sys�
tem with determinism� An example is an implementation of nondeterministic
scheduling using a round�robin time�sliced scheduler �
�� A possibilistic property
basically asserts that certain system inputs do not interfere with the possibility
of certain events� So nondeterminism is essential to such properties� A safety
property	 on the other hand	 is insensitive to this kind of re�nement� Another
argument commonly heard is that information �ow is a predicate of trace sets
whereas safety is a predicate of individual traces� This argument can be applied
to deterministic systems� We examine it more carefully and present a secrecy
criterion for programs that relates secrecy and safety�

� A characterization of safety properties

Consider a deterministic programming language with variables�

�exp
 e ��� x j n j e� � e� j e� � e� j e� � e�

�cmd
 c ��� x �� e j c�� c� j if e then c� else c� j while e do c
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Here x stands for a variable and n for an integer literal� Integers are the only
values� we use � for false and nonzero for true� Note that expressions do not have
side e�ects	 nor do they contain partial operations like division�

A transition semantics is given for the language in Fig� �� We assume that
expressions are evaluated atomically� Thus we simply extend a memory � in the
obvious way to map expressions to integers	 writing ��e
 to denote the value of
expression e in memory ��

�update� x � dom���

�x �� e� �� �� �
x �� ��e��

�sequence� �c�� �� �� ��

�c�� c�� �� �� �c�� �
��

�c�� �� �� �c�

�� �
��

�c�� c�� �� �� �c�

�� c�� �
��

�branch� ��e� �� �

�if e then c� else c�� �� �� �c�� ��

��e� � �

�if e then c� else c�� �� �� �c�� ��

�loop� ��e� � �

�while e do c� �� �� �

��e� �� �

�while e do c� �� �� �c�while e do c� ��

Fig� �� Transition semantics

The rules de�ne a transition relation �� on con�gurations� A con�guration

m is either a pair �c� �
	 where c is a command and � is a memory	 or simply
a memory �� We de�ne the re�exive transitive closure ��� in the usual way�
First m ��� m	 for any con�guration m	 and m ��k m��	 for k � �	 if there is
a con�guration m� such that m ��k�� m� and m� �� m��� Then m ��� m� if
m ��k m� for some k � ��

A trace is a �possibly in�nite
 derivation sequence m� �� m� �� � � � with
�nite pre�xes m� �� m�	 m� �� m� �� m�	 and so on� And if � is a trace
then so is every pre�x of ��

De�nition �� A safety property is a set S of traces such that for all traces ��

� is in S i� every �nite pre�x of � is in S� A program is safe if every trace of it

belongs to S�

The �only�if� direction guarantees S is pre�x closed	 and the �if� direction allows
us to reject an in�nite trace by examining only a �nite amount of it� If there is
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an in�nite trace that is not in S	 then it must have a �nite pre�x that is also
not in S� Hence safety cannot rule out behaviors that amount to reaching some
execution state in�nitely often�

We also assume that the set of all �nite traces in S is recursive� Although
this need not be true of a safety property	 it seems reasonable given that one
typically identi�es a safety property with the ability to enforce it at runtime by
examining program traces of �nite length�

� A characterization of secrecy

We want to talk about secrecy in programs of our deterministic language so how
should secrets be introduced� Well there is nothing intrinsically secret about any
integer so we should forget about associating secrecy with values� Instead	 we
associate secrecy with the origin of a value which in our case will be the free
variables of a program� So each variable is either high �secret
 or low �public
�
The idea is that any initial value of a high variable is assumed to be secret
merely by virtue of being stored in a high variable� The initial value of a low
variable is not secret�

This origin�view of secrecy di�ers from the view held by others working with
assorted lambda calculi and type systems for secrecy ��	 ��� There	 secrecy is as�
sociated with values like boolean constants� It does not seem sensible to attribute
any level of security to such constants� After all	 what exactly is a �high�security�
boolean� Semantically	 there is nothing that makes it high or low� Basic constants
can be treated as high or low	 and therefore we take the view that they should be
typed polymorphically in any type system where levels of classi�cation become
�partially�ordered
 types�

We need to talk about secrecy violations� But what constitutes a violation�
Suppose k is a low variable and h is a high variable with initial value ��� Is
the assignment k �� �� in violation of secrecy� Presumably not since it just got
lucky and does not reliably reveal the value of h as h varies� On the other hand	
k �� h would be a violation�

As another example	 consider

k �� h� k �� k � h

Does it exhibit a violation� Despite the �rst assignment	 we might still regard
the composition as secure since h is only temporarily stored in k which always
has �nal value zero� One might wonder though whether even temporary storage
is a violation� It would be if execution could be suspended for some reason	 say
in an interleaved execution environment	 and k�s contents inspected� For now	
we shall stay with deterministic sequential programs and focus on what they are
capable of doing upon normal termination� In this case	 the composition would
be secure� This also allows us to say that

h �� k� k �� h
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too is secure since there is no way to update h between the assignments�
One can begin to see the subtlety in deciding what constitutes a secrecy vio�

lation� In the end	 it comes down to what is observable by users and programs�
Users can make external observations of running programs and system behav�
ior on chosen inputs in order to learn secrets� Running time	 resource usage	
exceptions and so on are all valuable sources of information	 provided by even
well�designed programs	 that can be observed outside a program and exploited�
Programs	 in contrast	 make internal observations in that they are limited to
whatever observations their semantics prescribe� Controlling these observations
is much more tractable as long as implementations are faithful to the semantics�

and any program translation preserves the secrecy criterion of interest� With
a semantics at least	 we have a means of specifying and reasoning about the
behaviors of programs and the observations they can make� We shall concern
ourselves with internal observations only� This is still useful� For instance	 it
treats a Trojan Horse in mobile code that attempts to leak client secrets�

So now that we have some intuition behind secrecy	 how do we formalize it�
There are a number of di�erent techniques such as process calculi equivalence
���	 a PER model ���	 and operational formulations �
����� In order to contrast
secrecy with safety	 we give a trace�based description� It is useful to �rst de�ne
a notion of con�guration equivalence� Memories � and �� are equivalent	 written
� � ��	 if ��v
 � ���v
 for all low variables v� And �c� �
 � �c�� ��
 if c and c� are
syntactically equal and � � ���

De�nition �� Secrecy is a binary relation R on traces where R��� ��
 is true

unless � has the form m� �� m� �� � � � �� �� �� has the form m�

�
��

m�

�
�� � � � �� ��� m� � m�

�
and � �� ��� A program is secret if R relates every

pair of its traces�

Basically	 secrecy is asserting that the �nal value of any low variable does not
depend on the initial values of high variables� This de�nition applies only to
deterministic programs� Notice that a program may be secret even though it has
a �nite trace and an in�nite trace whose starting con�gurations are equivalent�
In other words	 termination of a secret program can be a�ected by di�erences
in the initial values of high variables�

� Contrasting secrecy with safety

Notice that secrecy relates program executions whereas a safety property does
not� This is the essential di�erence between them� There are some interesting
consequences of this di�erence in terms of enforcing secrecy versus safety�

Suppose we take the view that a program may be unsafe but we won�t worry
about its o�ending traces unless one of them tries to emerge during the current
execution� So we don�t try to convince ourselves once and for all that a program
is safe� Instead we accept the fact it may be unsafe and put our trust in an

� Knowing when an implementation is faithful can also be tricky�
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execution monitor to guard against unsafe behavior� This is an old idea from
operating systems� A monitor works by monitoring the execution of a program
and trapping it before it violates the policy being enforced ���� It relies only on
information available at runtime and does not examine the entire program being
executed� Recovery from such traps may be possible in some applications� It is
in these applications that monitoring is appealing because the complement of
deciding whether a program is safe �call it unsafety
 may be r�e� when safety is
not� When safety is not r�e�	 we are immediately faced with incompleteness in
any sound and r�e� logic for analyzing it� If the logic were complete then safety
would be r�e� since we would have a way to accept safe programs� simply hand
the given program o� to the machine M accepting programs that have proofs in
the logic� If M accepts then we accept and we know we�re correct because the
logic is sound� And if the program is safe	 then	 by completeness	 it has a proof
and therefore M will accept it� Incompleteness can be an obstacle in practice	
depending on the logic� Execution monitoring avoids it�

Monitoring can also dovetail nicely with a machineM accepting unsafety�M
might cycle through all memories �suitably encoded
 and run a given program
on each of them for at most some �xed number of steps	 where the memories
and number of steps are governed by pair generation� If the unsafe behavior
reveals itself within the number of steps allowed �guaranteed to be detectable
by M since the �nite traces of a safety property form a recursive set
	 then M

accepts� An execution monitor for unsafety is essentially a lazy version of M �
Eventually the monitor might decide that a given program is unsafe but that
does not concern us unless the current run demonstrates it�

We need to be clear on the terms soundness and completeness� The monitor
is a lazy version of M which accepts unsafety� Since M accepts unsafety	 we
have that if a program is unsafe then M will say so �completeness
 and if M
says a program is unsafe	 it is indeed unsafe �soundness
� Therefore	 if M never
says a program is unsafe then the program is safe� This we take as a soundness
criterion for M �and the monitor
 with respect to the safety property at hand�
Likewise	 if a program is safe	 then M never says otherwise� And this we take as
a completeness criterion for M relative to safety�

A similar technique can be used to prove that the complement of deciding
whether a program is secret is r�e�� One can encode a pair of memories and adopt
some convention for determining values of low variables	 and then run the given
program for at most a �xed number of steps on each memory in a generated pair
when the memories are equivalent� If the runs terminate yielding inequivalent
memories	 then accept� But unlike the complement of safety	 the technique here
does not dovetail with execution monitoring because it requires two memories�
Monitoring involves only one	 that of the current execution� So for this notion
of secrecy	 monitoring cannot be employed as a way to guard against secrecy
violations as it was used to guard against safety violations� In fact	 we can be
more rigorous� As we shall see	 one can prove there is no policy	 implemented by
an execution monitor	 that implies secrecy and is complete� In contrast	 there
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are many safety properties that have sound and complete execution monitors�
So what alternatives are there for enforcing secrecy�

One approach is to turn to a static analysis whereby we attempt to show
once and for all that a given program is secret� But we will be faced with in�
completeness in any sound and r�e� system for reasoning about secrecy because
determining whether a program is secret is undecidable� Decidable type sys�
tems fall into this category ����� Instead	 one may adopt a very expressive logic
and use veri�cation conditions for establishing secrecy without worrying about
mechanizing proofs� Work along these lines is described in ����

In the next section	 we shall see an example of a program secrecy crite�
rion implied by a policy that is implemented using an execution monitor� It is
called weak secrecy� A disadvantage of weak secrecy is that it ignores indirect
dependencies caused by branching�hence the term �weak�� As a result	 some
programs satisfy weak secrecy but are not secret� But there are also secrect pro�
grams that do not satisfy weak secrecy	 re�ecting a basic requirement of safety�
So neither property implies the other� The monitor is sound but incomplete for
weak secrecy� It may trap a program that satis�es weak secrecy�

� Weak secrecy

Every trace has a corresponding branch�free program formed by sequencing up�
dates from those steps of the trace whose derivations are rooted with updates�
For instance	 if k� h � dom��
 and ��h
 � �	 then corresponding to the trace

�k �� h� if h then k �� � else k �� �� �
 �m�


�� �if h then k �� � else k �� �� ��k �� ��h
�
 �m�


�� �k �� �� ��k �� ��h
�
 �m�


�� ��k �� ��h
��k �� �� �m�


is the branch�free program k �� h� k �� �� Notice that by rules �loop
 and
�branch
	 the corresponding program for a trace may be empty�

Now we say that a program is weakly secret if every trace of it has a secret
branch�free program� For instance	 the program in the preceding example is not
weakly secret� Traces m� �� m� and m� �� m� �� m� do not have secret
branch�free programs	 but m� �� m� �� m� �� m� does� It may seem that
we still have not de�ned a criterion for program secrecy that follows from some
policy implemented by execution monitoring since we still cast our de�nition in
terms of secrecy which relates program executions� But there is a policy that
implies weak secrecy and it can be implemented by an execution monitor�

��� A policy for weak secrecy and its monitor

An execution monitor is given in Fig� � as a set of rules governing transitions
that the monitor can make� Each transition has the form

�c� �
� q
M
�� m� q�
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where q and q� are states fkg or fk� hg� The monitor is equipped to handle
executions of programs with only two variables	 namely k and h	 which are low
and high variables respectively� A state indicates those variables whose values
at that point are independent of initial values of h� This of course may change
during execution depending upon updates to h�

The policy is captured by the �update
 rules� If we take state fkg to be the
initial state	 then the third �update
 rule	 for instance	 allows a transition to
state fk� hg because h is the target of the assignment and h does not occur in the
right side e� Thereafter	 h is treated as a low variable in state fk� hg� Notice that

�update� k � dom���� h �� e

�k �� e� ��� fkg
M

�� �
k �� ��e��� fkg

h � dom���� h � e

�h �� e� ��� fkg
M

�� �
h �� ��e��� fkg

h � dom���� h �� e

�h �� e� ��� fkg
M

�� �
h �� ��e��� fk� hg

x � dom���

�x �� e� ��� fk� hg
M

�� �
x �� ��e��� fk� hg

�sequence� �c�� ��� q
M

�� ��� q�

�c�� c�� ��� q
M

�� �c�� �
��� q�

�c�� ��� q
M

�� �c�

�� �
��� q�

�c�� c�� ��� q
M

�� �c�

�� c�� �
��� q�

�branch� ��e� �� �

�if e then c� else c�� ��� q
M

�� �c�� ��� q

��e� � �

�if e then c� else c�� ��� q
M

�� �c�� ��� q

�loop� ��e� � �

�while e do c� ��� q
M

�� �� q

��e� �� �

�while e do c� ��� q
M

�� �c�while e do c� ��� q

Fig� �� An execution monitor

once an evaluation reaches state fk� hg	 it remains in fk� hg thereafter� In state
fk� hg	 the monitor no longer has any e�ect on executions� This is where the
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semantics of Fig� � and the monitor merge in the sense that for every command

c	 �c� �
 �� m if and only if �c� �
� fk� hg
M
�� m� fk� hg�

Remark �� One can think of the states in a transition as inherited and synthe�
sized attributes� Generalizing the execution monitor to handle more variables
can be done by introducing a set I of variables	 each of whose value is in�
dependent of the initial value of any high variable� There would actually be
only two �update
 rules� The �rst rule�s hypothesis would	 for an assignment
x �� e	 require 	h � high � h � I 
 h �� e� Its synthesized attribute would be
I �fxg� The second rule�s hypothesis would require that x is a high variable and
�h � high � h �� I 
 h � e� Its synthesized attribute would be simply I �

We can regard a set of traces of the monitor as a safety property related to
secrecy by the following theorem�

Theorem �� Let � be a trace of the monitor starting in state fkg� Then every

�nite pre�x of � has a secret branch�free program�

If the monitor never traps a given program on any input	 when started in
state fkg	 then the program is weakly secret� However	 a program may be weakly
secret yet get trapped �e�g� k �� h�h
� The monitor also traps a secret program�

k �� h� k �� k � h

Here there is a trace whose branch�free program is just k �� h which is not secret�
One might consider altering the monitor in some way to admit all executions of
this program but then its traces would no longer be pre�x closed as a trace for
k �� h would not exist if the monitor�s policy implies secrecy� It follows then that
there is no monitor�enforced policy that is sound and complete for secrecy since
the set of all traces of every monitor is pre�x closed� Simply put	 if the monitor
executes k �� h	 then it�s unsound	 and if it doesn�t	 then it�s incomplete�

The monitor also ignores indirect dependencies� For instance	 it does not trap

if h then k �� � else k �� �

even though the program is not secret�

� Concluding remarks

Execution monitoring has been a useful mechanism for implementing various
policies� It is important to distinguish policies from properties� A policy implies
a property	 and in some cases	 may be more restrictive than it needs to be in
order to imply the property� The execution monitor presented here implements
a policy that implies weak secrecy in the sense that if it never traps a given
program on any input	 when started in state fkg	 then the program is weakly
secret� It does not however imply secrecy� In fact	 no policy implemented by an
execution monitor can imply secrecy and be complete�






An interesting direction to pursue is completeness of the monitor for weak
secrecy	 that is	 trying to extend the monitor so that it never traps a weakly secret
program� Doing this for a more realistic set of expressions would be challenging�
We assumed that expressions are executed atomically and that the monitor can
inspect an expression at runtime� But expressions obviously can be far more
complex	 involving function calls	 conditional expressions	 exceptions and side
e�ects� One cannot assume these sorts of expressions execute atomically�
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